

University of Brighton

PGCert Learning & Teaching in Higher Education 2018/19

Jenny Terry

j.l.terry@brighton.ac.uk @jennyterry Centre for Learning & Teaching / School of Applied Social Science

INTRODUCTION

- Social Science departments are increasingly considering teaching R/RStudio instead of IBM SPSS Statistics for data analysis on research methods/statistics modules.
- Concerns exist over the steep learning curve of R/RStudio's command line interface (Figure 1) compared to the relative ease of SPSS's 'point and click' graphical user interface (Figure 2).
- Initial classroom-based evaluative studies suggest students will overcome this barrier if motivated (e.g. Poldrack, 2018) but there is no empirical support.
- Motivation is argued to be the most important predictor of achievement in higher education (Biggs & Tang, 2011) and amongst non-specialist (i.e. non computing/maths) introductory statistics students (e.g. Field, 2010; 2014).
- Research is yet to identify which factors might motivate these learners to persist with R/RStudio.
 The present project addressed this gap.

I • 🐨 🖆 • 🖪 🗐 I 📥 I [Addins -		🔋 Project: (Non
<pre>92 y0 <- rlnorm(n, me 93 y1 <- rlnorm(n, me 94 95 flag <- rbinom(n, me 96 y <- y0*(1 - flag) 97 } 98 99 bimodalData <- bimod 100 101 r_data <- data.frame 102 103 myN <- 250 104 myM1 <- 58</pre>	<pre>Knit 、 ♣ 、 unction (n, cpct, mu1, mu2, sig1, sig2) { an = mu1, sd = sig1) an = mu2, sd = sig2) size = 1, prob = cpct) + y1*flag alDistFunc(n = 250, cpct, mu1, mu2, sig1, sig2)</pre>	☐ ☐ C Insert • 🛧 I 🖬 Run • <table-cell> • 둝</table-cell>	<pre>Console ~/ → + scale_x_continuous(breaks = seq(0, 100, 10), limits = c(20, 100)) + + ggtitle("Point-and-click Software") + + theme_apa() > r_hist <- ggplot(data, aes(log.bimodalData .)) > r_hist + + geom_histogram(binwidth = 2, alpha = 0.4 , fill = "blue") + + labs(x = "Statistics Module Grade", y = "Frequency") + + scale_y_continuous(breaks = seq(0, 100, 5), limits = c(0, 20)) + + scale_x_continuous(breaks = seq(0, 100, 10), limits = c(20, 100)) + </pre>
108 109 spss_data <- data.fr 110 data <- cbind(r_data 111 View(data) 112	, spss_data)		<pre>+ ggtile("R/RStudio Software") + + theme_apa() > Files Plots Packages Help Viewer</pre>
116Īabs(x = "Statisti117scale_y_continuous118scale_x_continuous	width = 2, alpha = 0.4, fill = "blue") + cs Module Grade", y = "Frequency") + (breaks = seq(0, 100, 5), limits = c(0, 20)) + (breaks = seq(0, 100, 10), limits = c(20, 100)) + -Click Software") +	R Markdown 🗧	
Environment History Connections			
😭 🔚 📰 Import Dataset 🗸 🞻		≣ List マ C	
Global Environment 🔹		٩	
r_hist	List of 9	٩٩	
spss_data	250 obs. of 1 variable	-	
spss_hist	List of 9	م	

FIGURE 1: RStudio interface

			-	Re <u>p</u> orts D <u>e</u> scriptiv	ve Statisti	cs		* *			1.			<u>)</u>														
					Statistics			•																		Visible	e: 131 of 13	31 Var
	€ ^{Q73} _8	, Q73_ 9 0		Ta <u>b</u> les	Haana			*	3_ 🎺 C	273_ 16	Q73_ 17	€ Q7 1	3_ 8	Q65_	Q65_	Q65_ 3	✓ Q65_ 4		Q65	5_ 🛷 Q65 7	Q65	5_ 🎺 Q65 9	Q74_	¢ Q74_ 2	€ Q74_ 3		€ Q74_ 5	€ ⁰⁷
1	2	3	3	Co <u>m</u> pare		dal			2	1	2		2	4	4	4	4	3	}	3	4	3	81.00	100.00	100.00	95.00	100.00	100.
2	3	3	3	_	Linear Mo				1	1	2		1	3	3	4	3	3	}	3	4	3	90.00	70.00	100.00	100.00	94.00	84
3	2	3	4	_	zed Linea	rmodels			2	2	2		2	3	3	3	4	3	}	2	3	3	70.00	51.00	100.00	100.00	100.00	100
4	3	3	2	Mi <u>x</u> ed Mo					3	3	3		3	4	4	4	3	1	1	2	1	2	60.00	39.00	78.00	68.00	73.00	72
5	3	3	2	<u>C</u> orrelate				P	2	2	3		2	3	3	4	2	3	}	3	3	2	50.00	30.00	100.00	70.00	50.00	80
6	1	4	2	<u>R</u> egressi					Auto	omatic L	inear N	lodeling]	2	3	3	1	3	}	4	2	3 4	100.00	80.00	100.00	25.00	85.00	46
7	1	4	3	L <u>og</u> linear					🔛 Line	ear				3	3	2	4	4	Ļ	4	4	4 4	100.00	95.00	100.00	70.00	93.00	100
8	2	3	2	Neural N	et <u>w</u> orks				🗾 <u>C</u> ur	ve Estin	nation			4	4	3	1	2	2	2	4	2	95.00	61.00	100.00	85.00	100.00	8
9	1	4	2	Classi <u>f</u> y					腸 Parl	tial Lea <u>s</u>	<u>s</u> t Squa	res		4	4	4	4	4	Ļ	4	1	4	100.00	100.00	100.00	100.00	50.00	55
10	2	3	4		on Reduc	tion			🔡 Bina	ary Lo <u>q</u> is	stic			1	1	3	4	4	Ļ	4	4	4	100.00	100.00	100.00	100.00	100.00	100
11	1	3	3	Sc <u>a</u> le						tinomial		ic		4	3	2	4	3	3	3	4	3	3 100.00	80.00	100.00	75.00	100.00	100
12	1	4	2 !	lonpara	metric Tes	sts		•	Grd		209.00			3	3	3	4	2	2	3	4	3 4	50.00	100.00	100.00	75.00	100.00	100
13	1	3	2	Forecas <u>t</u> i	ing			•	_					3	3	3	3	2	-	2	2	2	80.00	61.00	50.00	20.00	20.00	50
14	1	4		Survival				•	Prol					3	3	4	4	3		3	2	4 4	100.00	100.00	70.00	70.00	85.00	8
15	2	4		/l <u>u</u> ltiple F	Response	•		•	🚠 <u>N</u> or					4	3	3	2	3		3	3	3 4	100.00	100.00	9.00	5.00	50.00	7
16	1	4	2 🔣 N	lissing V		🔣 <u>W</u> ei	🔣 Weight Estimation			4	4	3	4	3		3	4	3 4	100.00	100.00	100.00	50.00	100.00	10				
17	1	3	3 1	Aultiple I	mputation	1	•	<u>k</u> <u>2</u> -St	🕌 <u>2</u> -Stage Least Squares				4	3	1	4	2		2	3	2	3 100.00	51.00	100.00	34.00	100.00	10	
18	1	4		Complex Samples						Optimal Scaling (C			i)	3	2	2	3	2	-	3	4	4 4	47.00	52.00	100.00	99.00	100.00	9
19	2	3		Simulatio	n				-	-			4	4	4	4	3	2	-	2	3		3 100.00	100.00	100.00	100.00	100.00	100
20	1	4		Quality C	ontrol				1	1	1		1	3	3	2	4	3		4	4	3 4	100.00	100.00	100.00	100.00	50.00	100
21	2	4	2 2 F		<u>v</u> e				2	1	1		1	3	5	3	4	4		3	3	3		65.00	83.00	75.00	85.00	74
22	1	4	3	patial a	nd Tempo	oral Mode	ling		1	1	1		1	1	1	1	3	3		4 3	4	3 3	3 72.00 57.00	81.00 32.00	100.00 69.00	89.00 51.00	100.00 52.00	74
23 24	1	3	3 [Direct Ma	r <u>k</u> eting				1	- 2	2		2	3	3	3	3	4	• 	J 1	3 3	2	100.00	32.00	80.00	51.00 80.00	52.00 80.00	87 90
24 25	2	4	1	3	3	4	2		2	3	2		2	2	2	2	4	4	•	4	3 3	4	3 76.00	85.00	100.00	64.00	79.00	90
25	2	4	7	3	2	4	2		2	2	4		2	2	2	2	4	3		3	4	4 .	86.00	100.00	100.00	20.00	76.00	64
20	1	3	3	3	1	3	1		1	1	1		1	3	3	2	4	2	·	-	4	3	100.00			49.00	49.00	

FIGURE 2: SPSS interface

Social science faculty view motivation as the key to overcoming barriers to learning R Studio

"I think I'd probably still have [continued trying], because, I'd think, what... was I doing wrong? Eventually, I'll figure this out."

- Consistent with Biggs & Tang (2011), motivation was enhanced by deeply held beliefs that learning R/RStudio was possible with practice and support (i.e. high selfefficacy).
- Faculty perceived efficacy to be considerably lower in students (contributing to anxiety), suggesting it may require cultivation.
- Normalising errors and uncertainty when learning enhanced efficacy and faculty were comforted by the realisation they were not expected to learn by rote.

Accountability

"I needed to know somebody expected me to do something by a certain time because there was just so many other things going on."

- Extending Biggs & Tang (2011), faculty motivation waned when there was no-one to be accountable to, allowing other tasks to take priority.
- Faculty perceived students to be outcomefocussed, reserving learning efforts for assessments, which would be problematic because R/RStudio requires gradual building of knowledge and skills over time.

Value

"I needed to do robust analyses and you can't do [those] analyses in SPSS." "I didn't want our university... to get left behind."

- Consistent with Biggs & Tang (2011), ppts were motivated to learn R/RStudio for work-related benefits (i.e. it had perceived value).
- Embedding concrete examples of specific research tasks helped faculty notice the usefulness of R/RStudio to their work.
- Faculty also noted students rarely see the value of research/statistics (but see e.g. Field, 2014) and expected this to be especially true for R/RStudio.

"I needn't have been so nervous, I was able to take it at my own pace without worrying what everyone else was doing."

- Extending Biggs & Tang (2011), faculty identified that anxiety surrounding statistics (including software) can reduce motivation.
- Elsewhere (see e.g. Field, 2010; 2014), anxiety has been identified as a barrier to learning statistics but the mechanisms are debated.
- Faculty's own anxieties were relieved by empathetic instructor support and self-paced learning that avoided peer comparison.

METHOD

- Participants: Teaching staff that had recently completed introductory R/RStudio training.
- 2 x n = 3 60-90 minute semi-structured group interviews explored both learning and teaching experiences.
- Analysis: Inductive; Thematic (Braun et al., 2019).

RESULTS & DISCUSSION (key themes in centre panel)

LIMITATIONS & FUTURE RESEARCH

 The present study was based on experiences of staff learners whose motivation processes may differ to student learners (low external validity). Future research should explore student motivation directly.

RECOMMENDATIONS FOR PRACTICE

- Formative flipped learning tasks (Bergmann and Sams, 2012) throughout modules may help to:
- Make students regularly accountable for learning
- Encourage ongoing self-paced leaning outside of the classroom to reduce anxiety
- Provide students with tangible, evolving evidence of their learning progression, increasing **efficacy**
- Apply a project-based learning approach (Hmelo-Silver, 2004) that highlights real-world relevance of R/RStudio in disciplines/industry/social contexts, enhancing value.
- Emphasise (ideally, model) the normalcy of mistakes in coding and avoid assessments that require rote learning of code (e.g. closed book exams) to reduce **anxiety** & increase **efficacy**.

CONCLUSIONS

- Educators' concerns about R/RStudio's steep learning curve are not unfounded but challenges may be mitigated by addressing the identified motivating factors within pedagogic practice.
- The present findings suggest Biggs & Tang's (2011) model does not account for all predictors of student motivation in the context of R/RStudio suggesting more challenging subjects may require additional motivators.

REFERENCES

Poldrack, R. (2018). To Code or Not to Code (in intro statistics)?. [Blog] russpoldrack.org. Available at: http://www.russpoldrack.org/2018/03/tocode-or-not-to-code-in-intro.html [Accessed 3 May 2019].

Biggs, J. B. & Tang, C. (2011). Teaching for quality learning at university: What the student does. Maidenhead, UK: SRHE and Open University Press. Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. Washington, DC: International Society for Technology in Education.

Braun, V., Clarke, V., Hayfield, N., & Terry, G. (2019). *Thematic Analysis*. Handbook of Research Methods in Health Social Sciences (pp. 843-860). Singapore: Springer.

Dweck, C. (2017). *Mindset - updated edition: Changing the way you think to fulfil your potential*. London: Hachette UK. Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn?. Educational psychology review, 16(3), 235-266. Field, A. P. (2010). Teaching Statistics. In: Upton, D. & Trapp, A. (Eds.) Teaching Psychology in Higher Education (pp. 134-163). Chichester, UK: Wiley-Blackwell.

Field, A. P. (2014). Skills in mathematics and statistics in psychology and tackling transition. *The Higher Education Academy STEM project series*. [online] York: Higher Education Academy. Available at: https://www.heacademy.ac.uk/knowledge-hub/skills-mathematics-and-statistics-psychology-and-tackling-transition [Accessed 5 Jan. 2019].